HOME -> Google -> Google Professional Machine Learning Engineer

Professional-Machine-Learning-Engineer Dumps Questions With Valid Answers


DumpsPDF.com is leader in providing latest and up-to-date real Professional-Machine-Learning-Engineer dumps questions answers PDF & online test engine.


  • Total Questions: 285
  • Last Updation Date: 17-Mar-2025
  • Certification: Machine Learning Engineer
  • 96% Exam Success Rate
  • Verified Answers by Experts
  • 24/7 customer support
Guarantee
PDF
$20.99
$69.99
(70% Discount)

Online Engine
$25.99
$85.99
(70% Discount)

PDF + Engine
$30.99
$102.99
(70% Discount)


Getting Ready For Machine Learning Engineer Exam Could Never Have Been Easier!

You are in luck because we’ve got a solution to make sure passing Google Professional Machine Learning Engineer doesn’t cost you such grievance. Professional-Machine-Learning-Engineer Dumps are your key to making this tiresome task a lot easier. Worried about the Machine Learning Engineer Exam cost? Well, don’t be because DumpsPDF.com is offering Google Questions Answers at a reasonable cost. Moreover, they come with a handsome discount.

Our Professional-Machine-Learning-Engineer Test Questions are exactly like the real exam questions. You can also get Google Professional Machine Learning Engineer test engine so you can make practice as well. The questions and answers are fully accurate. We prepare the tests according to the latest Machine Learning Engineer context. You can get the free Google dumps demo if you are worried about it. We believe in offering our customers materials that uphold good results. We make sure you always have a strong foundation and a healthy knowledge to pass the Google Professional Machine Learning Engineer Exam.

Your Journey to A Successful Career Begins With DumpsPDF! After Passing Machine Learning Engineer


Google Professional Machine Learning Engineer exam needs a lot of practice, time, and focus. If you are up for the challenge we are ready to help you under the supervisions of experts. We have been in this industry long enough to understand just what you need to pass your Professional-Machine-Learning-Engineer Exam.


Machine Learning Engineer Professional-Machine-Learning-Engineer Dumps PDF


You can rest easy with a confirmed opening to a better career if you have the Professional-Machine-Learning-Engineer skills. But that does not mean the journey will be easy. In fact Google exams are famous for their hard and complex Machine Learning Engineer certification exams. That is one of the reasons they have maintained a standard in the industry. That is also the reason most candidates sought out real Google Professional Machine Learning Engineer exam dumps to help them prepare for the exam. With so many fake and forged Machine Learning Engineer materials online one finds himself hopeless. Before you lose your hopes buy the latest Google Professional-Machine-Learning-Engineer dumps Dumpspdf.com is offering. You can rely on them to get you to pass Machine Learning Engineer certification in the first attempt.Together with the latest 2020 Google Professional Machine Learning Engineer exam dumps, we offer you handsome discounts and Free updates for the initial 3 months of your purchase. Try the Free Machine Learning Engineer Demo now and find out if the product matches your requirements.

Machine Learning Engineer Exam Dumps


1

Why Choose Us

3200 EXAM DUMPS

You can buy our Machine Learning Engineer Professional-Machine-Learning-Engineer braindumps pdf or online test engine with full confidence because we are providing you updated Google practice test files. You are going to get good grades in exam with our real Machine Learning Engineer exam dumps. Our experts has reverified answers of all Google Professional Machine Learning Engineer questions so there is very less chances of any mistake.

2

Exam Passing Assurance

26500 SUCCESS STORIES

We are providing updated Professional-Machine-Learning-Engineer exam questions answers. So you can prepare from this file and be confident in your real Google exam. We keep updating our Google Professional Machine Learning Engineer dumps after some time with latest changes as per exams. So once you purchase you can get 3 months free Machine Learning Engineer updates and prepare well.

3

Tested and Approved

90 DAYS FREE UPDATES

We are providing all valid and updated Google Professional-Machine-Learning-Engineer dumps. These questions and answers dumps pdf are created by Machine Learning Engineer certified professional and rechecked for verification so there is no chance of any mistake. Just get these Google dumps and pass your Google Professional Machine Learning Engineer exam. Chat with live support person to know more....

Google Professional-Machine-Learning-Engineer Exam Sample Questions


Question # 1

You have trained a DNN regressor with TensorFlow to predict housing prices using a set of predictive features. Your default precision is tf.float64, and you use a standard TensorFlow estimator;

estimator = tf.estimator.DNNRegressor(
feature_columns=[YOUR_LIST_OF_FEATURES],
hidden_units-[1024, 512, 256],
dropout=None)

Your model performs well, but Just before deploying it to production, you discover that your current serving latency is 10ms @ 90 percentile and you currently serve on CPUs. Your production requirements expect a model latency of 8ms @ 90 percentile. You are willing to accept a small decrease in performance in order to reach the latency requirement Therefore your plan is to improve latency while evaluating how much the model's prediction decreases. What should you first try to quickly lower the serving latency?

A. Increase the dropout rate to 0.8 in_PREDICT mode by adjusting the TensorFlow Serving parameters
B. Increase the dropout rate to 0.8 and retrain your model.
C. Switch from CPU to GPU serving
D. Apply quantization to your SavedModel by reducing the floating point precision to tf.float16.


D. Apply quantization to your SavedModel by reducing the floating point precision to tf.float16.
Explanation:

Quantization is a technique that reduces the numerical precision of the weights and activations of a neural network, which can improve the inference speed and reduce the memory footprint of the model1.

Reducing the floating point precision from tf.float64 to tf.float16 can potentially halve the latency and memory usage of the model, while having minimal impact on the accuracy2.

Increasing the dropout rate to 0.8 in either mode would not affect the latency, but would likely degrade the performance of the model significantly, as dropout is a regularization technique that randomly drops out units during training to prevent overfitting3.

Switching from CPU to GPU serving may or may not improve the latency, depending on the hardware specifications and the model complexity, but it would also incur additional costs and complexity for deployment4





Question # 2

You have been given a dataset with sales predictions based on your company’s marketing activities. The data is structured and stored in BigQuery, and has been carefully managed by a team of data analysts. You need to prepare a report providing insights into the predictive capabilities of the data. You were asked to run several ML models with different levels of sophistication, including simple models and multilayered neural networks. You only have a few hours to gather the results of your experiments. Which Google Cloud tools should you use to complete this task in the most efficient and self-serviced way?
A. Use BigQuery ML to run several regression models, and analyze their performance.
B. Read the data from BigQuery using Dataproc, and run several models using SparkML.
C. Use Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics.
D. Train a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms.


A. Use BigQuery ML to run several regression models, and analyze their performance.
Explanation:

Option A is correct because using BigQuery ML to run several regression models, and analyze their performance is the most efficient and self-serviced way to complete the task. BigQuery ML is a service that allows you to create and use ML models within BigQuery using SQL queries1. You can use BigQuery ML to run different types of regression models, such as linear regression, logistic regression, or DNN regression2. You can also use BigQuery ML to analyze the performance of your models, such as the mean squared error, the accuracy, or the ROC curve3. BigQuery ML is fast, scalable, and easy to use, as it does not require any data movement, coding, or additional tools4.

Option B is incorrect because reading the data from BigQuery using Dataproc, and running several models using SparkML is not the most efficient and self-serviced way to complete the task. Dataproc is a service that allows you to create and manage clusters of virtual machines that run Apache Spark and other open-source tools5. SparkML is a library that provides ML algorithms and utilities for Spark. However, this option requires more effort and resources than option A, as it involves moving the data from BigQuery to Dataproc, creating and configuring the clusters, writing and running the SparkML code, and analyzing the results.

Option C is incorrect because using Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics is not the most efficient and self-serviced way to complete the task. Vertex AI Workbench is a service that allows you to create and use notebooks for ML development and experimentation. Scikit-learn is a library that provides ML algorithms and utilities for Python. However, this option also requires more effort and resources than option A, as it involves creating and managing the notebooks, writing and running the scikit-learn code, and analyzing the results.

Option D is incorrect because training a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms is not the most efficient and self-serviced way to complete the task. TensorFlow is a framework that allows you to create and train ML models using Python or other languages. Vertex AI is a service that allows you to train and deploy ML models using built-in algorithms or custom containers. However, this option also requires more effort and resources than option A, as it involves writing and running the TensorFlow code, creating and managing the training jobs, and analyzing the results.

References:

BigQuery ML overview
Creating a model in BigQuery ML
Evaluating a model in BigQuery ML
BigQuery ML benefits
Dataproc overview
[SparkML overview]
[Vertex AI Workbench overview]
[Scikit-learn overview]
[TensorFlow overview]
[Vertex AI overview]




Question # 3

You are developing a custom TensorFlow classification model based on tabular data. Your raw data is stored in BigQuery contains hundreds of millions of rows, and includes both categorical and numerical features. You need to use a MaxMin scaler on some numerical features, and apply a one-hot encoding to some categorical features such as SKU names. Your model will be trained over multiple epochs. You want to minimize the effort and cost of your solution. What should you do?
A. 1 Write a SQL query to create a separate lookup table to scale the numerical features.
2. Deploy a TensorFlow-based model from Hugging Face to BigQuery to encode the text features.
3. Feed the resulting BigQuery view into Vertex Al Training.
B. 1 Use BigQuery to scale the numerical features.
2. Feed the features into Vertex Al Training.
3 Allow TensorFlow to perform the one-hot text encoding.
C. 1 Use TFX components with Dataflow to encode the text features and scale the numerical features.
2 Export results to Cloud Storage as TFRecords.
3 Feed the data into Vertex Al Training.
D. 1 Write a SQL query to create a separate lookup table to scale the numerical features.
2 Perform the one-hot text encoding in BigQuery.
3. Feed the resulting BigQuery view into Vertex Al Training.


C. 1 Use TFX components with Dataflow to encode the text features and scale the numerical features.
2 Export results to Cloud Storage as TFRecords.
3 Feed the data into Vertex Al Training.

Explanation:

TFX (TensorFlow Extended) is a platform for end-to-end machine learning pipelines. It provides components for data ingestion, preprocessing, validation, model training, serving, and monitoring. Dataflow is a fully managed service for scalable data processing. By using TFX components with Dataflow, you can perform feature engineering on large-scale tabular data in a distributed and efficient way. You can use the Transform component to apply the MaxMin scaler and the one-hot encoding to the numerical and categorical features, respectively. You can also use the ExampleGen component to read data from BigQuery and the Trainer component to train your TensorFlow model. The output of the Transform component is a TFRecord file, which is a binary format for storing TensorFlow data. You can export the TFRecord file to Cloud Storage and feed it into Vertex AI Training, which is a managed service for training custom machine learning models on Google Cloud.

References:

TFX | TensorFlow
Dataflow | Google Cloud
Vertex AI Training | Google Cloud




Question # 4

You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?
A. Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.
B. In Cloud Logging, create a logs-based alert using the logs in the Vertex Al endpoint. Configure Cloud Logging to send an email when the alert is triggered.
C. In Cloud Monitoring create a logs-based metric and a threshold alert for the metric. Configure Cloud Monitoring to send an email when the alert is triggered.
D. Export the container logs of the endpoint to BigQuery Create a Cloud Function to run a SQL query over the exported logs and send an email. Use Cloud Scheduler to trigger the Cloud Function.


A. Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.
Explanation:

Prediction drift is the change in the distribution of feature values or labels over time. It can affect the performance and accuracy of the model, and may require retraining or redeploying the model. Vertex AI Model Monitoring allows you to monitor prediction drift on your deployed models and endpoints, and set up alerts and notifications when the drift exceeds a certain threshold. You can specify an email address to receive the notifications, and use the information to retrigger the training pipeline and deploy an updated version of your model. This is the most direct and convenient way to achieve your goal.

References:

Vertex AI Model Monitoring
Monitoring prediction drift
Setting up alerts and notifications




Question # 5

You are building a TensorFlow text-to-image generative model by using a dataset that contains billions of images with their respective captions. You want to create a low maintenance, automated workflow that reads the data from a Cloud Storage bucket collects statistics, splits the dataset into training/validation/test datasets performs data transformations, trains the model using the training/validation datasets. and validates the model by using the test dataset. What should you do?
A. Use the Apache Airflow SDK to create multiple operators that use Dataflow and Vertex Al services Deploy the workflow on Cloud Composer.
B. Use the MLFlow SDK and deploy it on a Google Kubernetes Engine Cluster Create multiple components that use Dataflow and Vertex Al services.
C. Use the Kubeflow Pipelines (KFP) SDK to create multiple components that use Dataflow and Vertex Al services Deploy the workflow on Vertex Al Pipelines.
D. Use the TensorFlow Extended (TFX) SDK to create multiple components that use Dataflow and Vertex Al services Deploy the workflow on Vertex Al Pipelines.


D. Use the TensorFlow Extended (TFX) SDK to create multiple components that use Dataflow and Vertex Al services Deploy the workflow on Vertex Al Pipelines.
Explanation:

According to the web search results, TensorFlow Extended (TFX) is a platform for building end-to-end machine learning pipelines using TensorFlow1. TFX provides a set of components that can be orchestrated using either the TFX SDK or Kubeflow Pipelines. TFX components can handle different aspects of the pipeline, such as data ingestion, data validation, data transformation, model training, model evaluation, model serving, and more. TFX components can also leverage other Google Cloud services, such as Dataflow2 and Vertex AI3. Dataflow is a fully managed service for running Apache Beam pipelines on Google Cloud. Dataflow handles the provisioning and management of the compute resources, as well as the optimization and execution of the pipelines. Vertex AI is a unified platform for machine learning development and deployment.

Vertex AI offers various services and tools for building, managing, and serving machine learning models. Therefore, option D is the best way to create a low maintenance, automated workflow for the given use case, as it allows you to use the TFX SDK to define and execute your pipeline components, and use Dataflow and Vertex AI services to scale and optimize your pipeline. The other options are not relevant or optimal for this scenario.

References:

TensorFlow Extended
Dataflow
Vertex AI
Google Professional Machine Learning Certification Exam 2023
Latest Google Professional Machine Learning Engineer Actual Free Exam Questions



Helping People Grow Their Careers

1. Updated Machine Learning Engineer Exam Dumps Questions
2. Free Professional-Machine-Learning-Engineer Updates for 90 days
3. 24/7 Customer Support
4. 96% Exam Success Rate
5. Professional-Machine-Learning-Engineer Google Dumps PDF Questions & Answers are Compiled by Certification Experts
6. Machine Learning Engineer Dumps Questions Just Like on
the Real Exam Environment
7. Live Support Available for Customer Help
8. Verified Answers
9. Google Discount Coupon Available on Bulk Purchase
10. Pass Your Google Professional Machine Learning Engineer Exam Easily in First Attempt
11. 100% Exam Passing Assurance

-->